The next theoretical challenges in gravitational-wave observations

Alessandra Buonanno
Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
Department of Physics, University of Maryland
The science from GW experiments stems on our ability to make precise theoretical predictions of gravitational waveforms. Success of analytical/numerical-relativity interface program.

For upcoming runs, do we need more accurate or complete waveform models to interpret observations & extract information? Requirements depend on goals.

Science: observing & inferring information of NSBHs, intermediate mass BBHs; discriminating among binary formation scenarios; probing GR, EOS of NS, and cosmology:

- higher harmonics (i.e., beyond quadrupolar radiation)
- gravitational self-force formalism (for small-(or large) mass ratio binaries)
- eccentricity
- deviations from GR
- tides
Solving two-body problem in General Relativity (including radiation)

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = \frac{8\pi G}{c^4} T_{\mu\nu} \]

- **GR** is non-linear theory.

- Einstein’s field equations can be solved:
 - approximately, but **analytically** (fast way)
 - exactly, but **numerically** on supercomputers (slow way)

- **Synergy** between **analytical** and **numerical relativity** is crucial.

- Physical (EOBNR) and phenomenological (Phenom) **inspiral-merger-ringdown waveforms**.
Solving two-body problem in General Relativity (including radiation)

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = \frac{8\pi G}{c^4} T_{\mu\nu} \]

• **GW151226**: SNR=13, 55 cycles (from 35 Hz), 1 sec.

(Abbott et al. PRL 116 (2016) 241103)

• **GR** is non-linear theory.

• Einstein’s field equations can be solved:
 - approximately, but analytically (fast way)
 - exactly, but numerically on supercomputers (slow way)

• **Synergy** between analytical and numerical relativity is crucial.

• Physical (EOBNR) and phenomenological (Phenom) **inspiral-merger-ringdown waveforms**.
Solving two-body problem in General Relativity (including radiation)

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = \frac{8\pi G}{c^4} T_{\mu\nu} \]

- **GW170817**: SNR=32, 3000 cycles (from 30 Hz), one minute.
 last 0.07sec

 - last minutes modeled by AR
 - modeled by NR

- GR is non-linear theory.

- Einstein’s field equations can be solved:
 - approximately, but analytically (fast way)
 - exactly, but numerically on supercomputers (slow way)

- **Synergy** between analytical and numerical relativity is crucial.

- Physical (EOBNR) and phenomenological (Phenom) inspiral-merger-ringdown waveforms.

(Abbott et al. PRL 119 (2017) 161101)
Unveiling binary black-hole properties: masses

Chirp mass is best measured. Individual masses can be better measured if merger is observed, because total mass is measured at merger. Spin/mass degeneracy, it can be broken by precession and higher harmonics.
Unveiling binary black-hole properties: spins

\[\chi_{\text{eff}} = \frac{c}{GM} \left(\frac{S_1}{m_1} + \frac{S_2}{m_2} \right) \cdot \frac{L}{|L|} \]

- Spins along orbital angular momentum better measured.
- Spins magnitudes < 0.7.
Unveiling binary black-hole properties: spins

\[\chi_p = \frac{c}{B_1 G m_1^2} \max (B_1 S_{1\perp}, B_2 S_{2\perp}) \]

• **Spins along orbital angular momentum** better measured.
• **Spins magnitudes** < 0.7.
• **No information** about precession.
Spin precessing waveform models

Precessing (co-rotating) frame
(AB, Chen & Vallisneri 03, Boyle et al. 11, Schmidt et al. 11, O’Shaughheessy et al. 11)

• **Single effective-spin precessing** waveform model in **frequency domain** (IMR phenomenological, 13-independent parameters; (2,2) mode). *(Schmidt et al. 12, Hannam et al. 14)*

• **Double-spin precessing** waveform model in **time domain** (EOBNR, 15-independent parameters; (2,2) & (2,1) modes). *(Pan et al. 14, Babak et al. 16)*
Effect of orientation of binary's orbital plane

spin nonprecessing binary

\(\chi_1 = (0,0,0.9), \chi_2 = (0,0,0.9) \quad q = 4 \)

face-on

\(\chi_1 = (0,0,0.9), \chi_2 = (0,0,0.9) \quad q = 4 \)

edge-on
Effect of orientation of binary's orbital plane

spin precessing binary

\(\chi_1 = (0.3, 0, 0.5), \chi_2 = (0.3, 0, -0.5) \quad q = 4 \)

face-on

edge-on
Binaries’ distance and inclination angle

\[h(t) = \frac{2\mathcal{M}}{D} A(\theta, \phi, \psi; \Theta) [\mathcal{M}\omega(t)]^{2/3} \cos(2\Phi(t) + 2\Phi_0 - \alpha) \]

- So far, BBHs observed closer to face-on/face-off: are observations biased?

GW150914

GW151226

\((Abbott \text{ et al. PRX 6 (2016) 041015}) \)
How waveform models compare with NR for BBHs observed?

(Abbott et al. PRL 116 (2016) 241103)

• Around region of original parameter recovery of BBHs, systematics due to modeling are smaller than statistical errors.
On systematics due to modeling comparing to NR waveform

- **Mock signal** from NR simulation with parameters close to GW150914.

 \[(Abbott \ et \ al. \ CQG \ 34 \ (2017) \ 104002)\]

- **Overall, no evidence for systematic bias** relative to the statistical error of original parameter recovery of GW150914.

\[\]
Parameter biases are found to occur for some configurations disfavored by data of GW150914.

E.g., biases are present for binaries inclined edge-on to the detector over a small range of choices of polarization angles.

Biases can be present for binaries with eccentricity > 0.05.

(see also Williamson et al. 2017)
Comparing EOBNR & IMRPhenom models: detection

- **Aligned/anti-aligned** waveform models. Only dominant (2,2) mode.

[Note that only 2.1% of 100,000 points have matches < 97%.]
Comparing EOBNR & IMRPhenom models: inferring parameters

- **Aligned/anti-aligned** waveform models. Only dominant (2,2) mode.
- Differences for **large mass ratios** (> 4) and **large spins** (> 0.8).

Faithfulness (Bohe’, …, AB et al. 16)

[Note that only 7% of 200,000 points have matches < 97%.]
Extending waveform model in all BBH parameter space

- Difficult to run NR simulations for large mass ratios (> 4) and large spins (> 0.8), with large number of GW cycles (> 50).

 NR waveform with only 15 GW cycles, it constrains EOBNR model only for masses larger than 150 Msun.

- For large mass ratios (> 4) combine PN & GSF results in EOB framework.
 (Damour 09; Barausse et al. 12, Le Tiec et al. 12, Bini et al. 12-16, Antonelli et al. in progress)

- Inclusion of GSF also important for EMRIs (LISA) and IMRIs (3G detectors).
Solution? Waveforms combining NR codes

- “Best” use of finite-difference (Einstein Toolkit, ET) & pseudo spectral (SpEC) codes

\(q = 4 \quad \chi_1 = 0.9 \quad \chi_2 = 0.9 \)

(Hinder, Ossokine et al. in prep 18)
Are we missing GWs from spin precessing BBHs?

- Modeled searches in O1 & O2 used templates with aligned/anti-aligned spins.

(Apostolatos et al. 1996, AB et al. 03; Harry, Privitera, Bohe’ & AB 16)
Should we employ spin precessing searches for NSBHs?

(Harry, Privitera, Bohe’ & AB 16)

- **Spin-precessing** template bank constructed.
- Factor of about 10 increase wrt non-precessing template bank.

<table>
<thead>
<tr>
<th>NSBH parameter ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_1</td>
</tr>
<tr>
<td>m_2</td>
</tr>
<tr>
<td>$</td>
</tr>
<tr>
<td>$</td>
</tr>
</tbody>
</table>

- Mergers with **misaligned spins** provide unique **astrophysical insights** into **formation** scenarios.
Should we employ spin precessing searches for NSBHs?

(Harry, Privitera, Bohe’ & AB 16)

- **Spin-precessing** template bank constructed.
- Factor of about 10 increase wrt non-precessing template bank.
- Mergers with **misaligned spins** provide unique **astrophysical insights** into formation scenarios.

NSBH parameter ranges

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_1</td>
<td>[3, 15] M_\odot</td>
</tr>
<tr>
<td>m_2</td>
<td>[1, 3] M_\odot</td>
</tr>
<tr>
<td>$</td>
<td>\chi_1</td>
</tr>
<tr>
<td>$</td>
<td>\chi_2</td>
</tr>
</tbody>
</table>

Diagram: 3D Illustration of Spin Alignment

- `face-on` alignment
- `edge-on` alignment
- `face-off` alignment

Heatmap: Sensitivity Map

- Color scale from 1.02 to 1.50
- Sensitivity at 100 Hz
Importance of higher harmonics: varying mass ratio

\[h_+(t; \Theta, \varphi) - i \ h_\times(t; \Theta, \varphi) = \sum_{\ell=2}^{\infty} \sum_{m=-\ell}^{\ell} -2 Y_{\ell m}(\Theta, \varphi) \ h_{\ell m}(t) \]

(Cotesta, AB et al. '18)

Merger-ringdown EOBNR model reproduces time & phase shifts between NR modes’ at peak.
Importance of higher harmonics: varying spins

\[
h_+ (t; \Theta, \varphi) - i \ h_\times (t; \Theta, \varphi) = \sum_{\ell=2}^{\infty} \sum_{m=-\ell}^{\ell} -2 Y_{\ell m}(\Theta, \varphi) \ h_{\ell m}(t)
\]

(Cotesta, AB et al. 18)

Merger-ringdown EOBNR model reproduces time & phase shifts between NR modes’ at peak.

- Merger-ringdown EOBNR model reproduces time & phase shifts between NR modes’ at peak.
Importance of higher harmonics also depends on geometric factor

\[h_+(t; \Theta, \varphi) - i \ h_-(t; \Theta, \varphi) = \sum_{\ell=2}^{\infty} \sum_{m=\ell}^{-\ell} -2Y_{\ell m}(\Theta, \varphi) \ h_{\ell m}(t) \]

(Cotesta, AB et al. 18)

geometric factor is important to determine strength of higher harmonics
Accuracy of multipolar EOBNR model against NR

- Non-precessing spin EOBNR waveform model with (2,1), (3,3), (4,4) & (5,5) modes.

(Cotesta, AB et al. 18)

- Extending analysis to other modes requires producing accurate NR waveforms for those modes.

(for modeling see also Mehta et al. 17, London et al. 17; for searches see Capano, ..., AB 16, Harry et al. 18)
Intermediate-mass binary black holes (IMBBHs): search in O1

(Abbott et al. PRD96 (2017) 022001)

- **IMBHBs**: $M > 100 \text{ Msun}$, $1 < q < 10$
- Only dominant (2,2) mode used.

- **Two searches employed**: matched-filter & minimal-assumption algorithms.
- **BBH** (100 Msun, aligned spins) rate $< 0.93/(\text{Gpc})^3/\text{yr}$ at 90% confidence.
Relevance of higher harmonics for IMBBHs

- Non-spinning EOBNR waveform model with \((2,1), (3,3), (4,4)\) & \((5,5)\) modes.
 - (Pan, AB et al. 11)

- Improvements in measurement of masses & orientation angles with higher harmonics.

- Total mass better measured than chirp mass for IMBBHs.

(see also Haster et al. 15)

\[d_L \text{ for } \text{SNR} = 12 \text{ (Gpc)} \]

\[z \text{ Redshift} \]

\[M_{\text{obs}} \text{ (M}_\odot\text{)} \]
Relevance of higher harmonics for IMBBHs (contd.)

(Graff, AB & Sathyaprakash 14)
Relevance of higher harmonics for IMBBHs (contd.)

SNR = 12, $M_{\text{obs}} = 500M_\odot$, $q = 4$, $\theta_{\text{JN}} = \pi/3$

dashed curves only include (2,2) mode
Unveiling the quasi-normal modes’ ringing of BHs

- **BH spectroscopy: unveiling nature of merger’s remnant**

 (Brito, AB & Raymond 18)

- We employ **parametrized inspiral-merger-ringdown** waveform model (pEOBNR) that includes modes beyond the dominant (2,2).

- Using pEOBNR we recover **more stringent bounds** on frequency and decay time of GW150914 QNM, than using damped sinusoid model.

\[
q = 6
\]
• Let us assume we did not find deviations from GR.
• We bound quasi-normal mode frequencies & decay times by combining several BH observations. \[\sigma_{lm} = \sigma_{lm}^{GR} (1 + \delta \sigma_{lm}) \]

About 30 GW150914-like events are needed to achieve errors of 5% and test no-hair conjecture.
Eccentric waveform models

• **EOB dynamics & waveform** extended to *any* eccentricity value for nonspinning binaries.

• Binary's **degrees of freedom** are divided into a **set of phase variables**, and a **set of quantities that are constant** in the absence of radiation reaction.

\[(Hinderer \& Babak 17)\]

(for eccentricity modeling see also Huerta et al. 14, 16; Hinder et al. 17; Loutrel \& Yunes 16, 17)
How waveform models compare with NR for BNS observations?

- We rely on AR models calibrated to point-mass NR (i.e., BBHs) for long inspiral, and can tune them over last 15-20 GW cycles to NR waveforms.

(Damour 1983, Flanagan & Hinderer 08, Binnington & Poisson 09, Vines et al. 11, Damour & Nagar 09, 12, Bernuzzi et al. 15, Hinderer et al. 16, Steinhoff et al. 16, Dietrich et al. 17, Dietrich et al. 18)
A first glimpse in EOS of neutron stars: GW170817

\[\Lambda = \frac{\lambda}{m_{NS}^5} = \frac{2}{3} k_2 \left(\frac{R_{NS} c^2}{G m_{NS}} \right)^5 \]

- With state-of-art waveform models, tides are reduced by ~20%. LVC analyses are ongoing.
- For NS spins > 0.1-0.15, spin-quadrupole affects GW phasing.

(Harry & Hinderer 17, Dietrich et al. 18)
Including dynamical tidal effects in EOB model

- **Dynamical tides**: NS’s f-modes can be excited.

- **Tidal forcing frequency approaches** eigenfrequency of NS’s normal modes of oscillation, resulting in an enhanced, more complex tidal response.

(Kokkotas et al. 1995, Flanagan et al. 08, Hinderer, … AB et al. 16, Steinhoff, … AB et al. 16)

(Hinderer, …, AB et al. 16)

\[
k_2 = \frac{3}{2} \frac{\lambda}{R_{NS}^5}
\]

NS’s effective response to dynamical tidal effects

- NSBH mass ratio 2
- \(\Gamma = 2 \) polytropic
- \(C_{NS} = 0.14444 \)

Including dynamical tidal effects in EOB model

- Tidal forcing frequency approaches eigenfrequency of NS’s normal modes of oscillation, resulting in an enhanced, more complex tidal response.

\[
k_2 = \frac{3}{2} \frac{\lambda}{R_{NS}^5}
\]

NS’s effective response to Dynamical tidal effects

- NSBH mass ratio 2
- \(\Gamma = 2 \) polytropic
- \(C_{NS} = 0.14444 \)
The new era of precision gravitational-wave (astro)physics

• Theoretical groundwork in **analytical and numerical relativity** has allowed us to build **faithful waveform models** to **search** for signals, **infer** astrophysical and cosmological properties and **test GR**.

• **To take full advantage of discovery potential** in next years and decades **we need** to continue to make **precise theoretical predictions**.

• For next few years, crucial (urgent) to **improve accuracy** of waveform models for mass ratios > 4 & spins > 0.8, include **higher harmonics** in spin precessing waveforms. This is **important for inferring science of BBHs, NSBH & BNS**.
“Astrophysical & Cosmological Relativity” Department

• Current members

• Past members contributed to work presented