Kilonova Emission from a Binary Neutron Star Merger

in collaboration with

Daniel Siegel, Ben Margalit, Imre Bartos, Nick Stone, Szabi Marka, Zoltan Haiman, Andrei Beloborodov
Dan Kasen, Eliot Quataert (UC Berkeley), Todd Thompson (OSU), Niccolo Bucciantini (INAF)
Rodrigo Fernandez (Alberta), Almudena Arcones, Gabriel Martinez-Pinedo, Meng-Ru Wu (Darmstadt)
Edo Berger, Kate Alexander, Phil Cowperthwaite, Matt Nicholl, Pete Blanchard, Ashley Villar (Harvard),
Ryan Chornock (Ohio), Raffaella Margutti, Wen-Fai Fong (Northwestern), Enrico Ramirez-Ruiz (UCSC)

Brian Metzger
Columbia University
in collaboration with

Sackler Meeting on Gravitational Wave Astrophysics, May 9, 2018
Astrophysical Origins of the Periodic Table

Big Bang

stellar evolution, CCSNe
exploding white dwarfs
Core Collapse SNe?

log $N_{(S_{i_{total}})}$ ≡ 6

neutron-capture elements

N=50
N=82
N=126

Atomic mass

Lodders (2003)
Cameron (1959)
Neutrino-Driven Winds from Proto-Neutron Stars

Each supernova need eject only \(\sim 10^{-5} M_\odot \) in r-nuclei

...but not neutron-rich enough!

\[\nu_e + n \rightarrow p + e^- \]

Solution: strong magnetic fields & rapid rotation? (e.g. BDM+07, Mosta+17)
Neutron Stars: Open Questions

The outcome of a NS merger depends on the uncertain EOS

Maximum mass?

Radius?

\[M_{\text{max}} > 2M_{\odot} \]

Ozel & Freire 2016
Neutron Star Binary Mergers

“Heavy Ion” Colliders in the Sky

LIGO/Virgo

EM Observation

Bartos, Brady, Marka 2013
“Heavy Ion” Colliders in the Sky

LIGO/Virgo

EM Observation

Bartos, Brady, Marka 2013
Electromagnetic Counterparts of NS Mergers

Jet–ISM shock (afterglow)
Optical (hours–days)
Radio (weeks–years)

$\Gamma \beta > 1$
Gamma-rays, X-rays, radio

GRB
$t \sim 0.1–1 \text{ s}$

Ejecta–ISM shock
Radio (years)

Kilonova
Optical ($t \sim 1 \text{ day}$)

Merger ejecta
Tidal tail and disk wind
$v \sim 0.1–0.3 \text{ c}$

Sub-relativistic

BH

BDM & Berger 12
Neutron-Rich Ejecta

“Dynamical” Ejecta

\[M_{\text{ej}} \sim 10^{-3} - 10^{-2} \, M_\odot \]

\[t_{\text{exp}} \sim \text{ms} \]

\[v_{\text{ej}} \sim 0.2 - 0.3 \, c \]

Accretion Disk Outflows

\[M_{\text{ej}} = f_w M_d \sim 3 \times 10^{-2} \left(f_w / 0.3 \right) \, M_\odot \]

\[t_{\text{exp}} \sim 0.1 - 1 \, \text{s} \]

\[v_{\text{ej}} \sim 0.1 \, c \]

Composition depends on NS lifetime

\[2 < n/p < 10 \]

\[\nu_e + n \rightarrow p + e^- \]
R-Process Network (neutron captures, photo-dissociations, α- and β-decays, fission)

T = 3.50 GK, \(n_n = 2.946 \times 10^3 \text{ cm}^{-3} \), \(R_{\text{mg}} = 639.5 \), \(s = 0.621 \text{ k}_{\nu}/\text{nuc} \), \(t = 0.0131 \text{ s} \)

Courtesy Gabriel Martinez-Pinedo as used in BDM et al. 2010
Final Isotopic Abundances

2nd peak: xenon, silver

3rd peak: platinum, gold

uranium, thorium

$Y_e = 0.1$

$n/p \approx 10$

BDM et al. 2010
Radioactive Heating of the Ejecta
(BDM et al. 2010; Roberts et al. 2011; Goriely et al. 2011; Korobkin et al. 2012; Lippuner & Roberts 2015)

charged decay products thermalize by coulomb scattering off background plasma

charged decay products

\[56_{\text{Ni}} + 56_{\text{Co}} \]

\[\propto t^{-1.3} \]

\[t_{\text{peak}} \]

\[10^4 \text{ km} \]

\[10 \text{ AU} \]
Radioactive Heating of the Ejecta
(BDM et al. 2010; Roberts et al. 2011; Goriely et al. 2011; Korobkin et al. 2012; Lippuner & Roberts 2015)

charged decay products thermalize by coulomb scattering off background plasma

\[\propto t^{-1.3} \]

\[\propto t^{-1} \]

Li & Paczynski 98

BDM et al. 2010
Radioactive Heating of the Ejecta

(BDM et al. 2010; Roberts et al. 2011; Goriely et al. 2011; Korobkin et al. 2012; Lippuner & Roberts 2015)

\[\propto t^{-1} \]

\[\propto t^{-1.3} \]

\[{^{56}\text{Ni}} + {^{56}\text{Co}} \]

Li & Paczynski 98

MERGERS OF NEUTRON STAR–BLACK HOLE BINARIES WITH SMALL MASS RATIOS: NUCLEOSYNTHESIS, GAMMA-RAY BURSTS, AND ELECTROMAGNETIC TRANSIENTS

S. Rosswog

School of Engineering and Science, International University Bremen, Campus Ring 1, Bremen 28759, Germany

Received 2005 February 19; accepted 2005 August 5

promising gamma-ray burst (GRB) central engine. We find between 0.01 and 0.2 \(M_\odot \) of the neutron star to be dynamically ejected. Like in a Type Ia supernova, the radioactive decay of this material powers a light curve with a peak luminosity of a few times \(10^{44} \) ergs s\(^{-1} \). The maximum is reached about 3 days after the coalescence and is
Electromagnetic counterparts of compact object mergers powered by the radioactive decay of \(r \)-process nuclei

A "Kilo-nova"

\[M_{ej} = 0.01M_\odot \]
\[V_{ej} = 0.1 \text{ c} \]

BDM et al. 2010
GW170817: the first BNS Merger

LVC + EM Partners 17

NGC 4993, D = 41+/-3 Mpc

Cantiello et al. 18

Optical counterpart discovered at ~11 hours!

GW-EM Joint Discovery Paper (Abbott+ 2017)

Viewing Angle ~ 10-40°
0.01 Msun “Kilonova” model from Metzger et al. 2010 (their Fig. 4)

GW170817 counterpart from Cowperthwaite et al. 2017

Theoretical fit:
\[L(t) \propto t^{-1.3} \]
0.01 Msun "Kilonova" model from Metzger et al. 2010 (their Fig. 4)

GW170817 counterpart from Cowperthwaite et al. 2017

~t^{-1.3}
Spectral Evolution

absorption “troughs” in NIR?
distinct peaks in optical and NIR at 2.5 days
distinct emission components?
absorption “troughs” in NIR
Kilonova Colors

- **Fe or light r-nuclei**
 - $T \sim 5500\,\text{K}$
 - $t_{\text{peak}} \sim 1\,\text{day}$
 - Metzger et al. 10
 - Roberts et al. 11

- **Heavy r-nuclei with lanthanides**
 - $T \sim 2500\,\text{K}$
 - $t_{\text{peak}} \sim 1\,\text{week}$
 - Barnes & Kasen 13
 - Tanaka & Hotokezaka 13

Graph showing relative flux vs. wavelength (angstroms) with peaks at different temperatures and time scales.
Kilonova Colors

Fe or light r-nuclei

\[T \sim 5500 \, \text{K} \]

\[t_{\text{peak}} \sim 1 \, \text{day} \]

Metzger et al. 10
Roberts et al. 11

Heavy r-nuclei with lanthanides

\[T \sim 2500 \, \text{K} \]

\[t_{\text{peak}} \sim 1 \, \text{week} \]

Barnes & Kasen 13
Tanaka & Hotokezaka 13

\[\frac{n}{p} < 3 \]

\[\frac{n}{p} > 3 \]

R-Process Isotopic Abundance Distribution

2nd peak: e.g. Xenon, Silver
3rd peak: e.g. Platinum, Gold

Metzger et al. 2010

Kilonova Colors with wavelength (angstroms) and relative flux.
“Blue” + “Red” Kilonova Models

BDM & Fernandez 2014

Blue KN (polar dynamical ejecta)

Red KN (disk wind)

\[\frac{n}{p} < 3 \]

\[\frac{n}{p} > 3 \]
2 Component Model: Everybody’s Data on GW170817

Blue KN: $1.6 \times 10^{-2} \, M_\odot$, $v \sim 0.26 \, c$

Red KN: $4 \times 10^{-2} \, M_\odot$, $v \sim 0.1 \, c$

Villar+18; Cowperthwaite+17
Homogeneous Purple Kilonova?
(e.g. Tanaka+17, Waxman+17)

Fine-tuned Y_e distribution (delta function at $Y_e = 0.25$) required to get $X_{La} = 10^{-3}$ (purple kilonova)...

Mixing?

Only if mixing happens *after* r-process complete ($t > 1$ s)
Found! (an) astrophysical r-process site

Burbidge, Burbidge, Hoyle & Fowler (1957)

Lattimer & Schramm (1974)

Galactic r-process rate:
\[\dot{M}_{A>100} \sim 7 \times 10^{-7} M_\odot \text{ yr}^{-1} \]
\[R_{\text{BNS}} \approx 1540^{3200}_{1220} \text{Gpc}^{-3} \text{yr}^{-1} \]
\[(\text{LVC 2017}) \]
\[M_r \sim 2 \times 10^{-3} - 4 \times 10^{-2} M_\odot \]

GW170917

total r-process: $5 \times 10^{-2} M_\odot$
gold $\sim 10 M_\oplus$
platinum $\sim 50 M_\oplus$
uranium $\sim 5 M_\oplus$
Red KN Ejecta from Disk Winds

\[M_{\text{red}} = 4 \times 10^{-2} \, M_\odot \]
\[v_{\text{red}} = 0.1 \, c \]

too much and too slow to be tidal tail

\[M_{\text{ej}} \sim 0.3-0.4 \, M_\odot \]

\[V_{\text{avg}} = 0.11 \, c \]
Blue Dynamical Ejecta?

high velocity $v_{\text{blue}} \sim 0.2-0.3 \, c$

=> ejecta from collision interface

large ejecta mass
$M_{\text{blue}} = 1.5 \times 10^{-2} \, M_\odot$

=> NS radius < 11 km
(Nicholl et al. 2017)

But not all dynamical ejecta will have high Y_e
Blue Ejecta from Magnetar Wind?

Strong Magnetic Field enhances wind mass-loss rate and velocity

\[v_B \approx \sqrt{3} c \sigma^{1/3} = \sqrt{3} \left(\frac{B^2 R_{ns}^4 \Omega^2}{\dot{M}} \right)^{1/3} \]

B_d \sim \text{few } 10^{14} \text{ G}
P \sim 0.8 \text{ ms}
\[t_{\text{collapse}} \sim 0.1-1 \text{ seconds} \]

BDM, Thompson, Quataert 2018
Implications for NS EOS: M_{max}

Possible Merger Outcomes:

• Immediate black hole ("prompt collapse")

• Differentially rotationally-supported hyper-massive NS (HMNS)

• Rigidly rotating rotationally-supported supramassive NS (SMNS)

• Indefinitely stable NS

Threshold masses depend on EOS

$M_{\text{max}} \approx 1.3-1.6$ M_{\odot}

$M_{\text{tot}} = 2.74-2.8$ M_{\odot}

GW170817
Implications for NS EOS: M_{max}

Possible Merger Outcomes:

- **Immediate black hole** ("prompt collapse")
- Differentially rotationally-supported **hyper-massive NS** (HMNS)
- Rigidly rotating rotationally-supported **supramassive NS** (SMNS)
- Indefinitely **stable NS**

Too much KN ejecta => $R_{1.6} > 10.7$ km (Bauswein et al. 2013)

Threshold masses depend on EOS

- $M_{\text{max}} \approx 1.2 M_{\odot}$
- $M_{\text{tot}} = 2.74-2.8 M_{\odot}$

GW170817

M_{max}
Supra-massive NS Remnant?

Stable Millisecond Magnetar?

\[B \sim 10^{14} - 10^{16} \, \text{G} \]

\[E_{\text{rot}} \sim 10^{52} - 10^{53} \, \text{erg} \]

\[L_{\text{sd}} = \frac{\mu^2 \Omega^4}{c^3} \approx 1.7 \times 10^{50} B_{15}^2 \, \text{erg s}^{-1} \]

\[t_{\text{sd}} \approx 147 \, \text{s} \, B_{15}^{-2} \]

Spin-down time < weeks-months unless \(B_d \ll 10^{12} - 10^{13} \, \text{G} \)
Magnetar Remnant Wind/Jet

more powerful magnetar jet

Bucciantini, BDM et al. 2012
Possible Merger Outcomes:

- Immediate black hole ("prompt collapse")
- Differentially rotationally-supported hyper-massive NS (HMNS)
- Rigidly rotating rotationally-supported supramassive NS (SMNS)
- Indefinitely Stable NS

Threshold masses depend on EOS

Too much KN ejecta
\[R_{1.6} > 10.7 \text{ km} \] (Bauswein et al. 2013)

Ejecta KE too low
\[M_{\text{max}} < 2.17 M_\odot \] (Margalit & BDM 17)
WAGER I: What will be the first EM GW-counterpart observed?

- Early UV/optical (neutron precursor, macronova cocoon etc.)
 Mansi, Tsvi, Siegel
- Blue Kilonova (disk wind emission, high Ye etc.)
 Brian, Oliver, Francois, Albino, Sasha
- Red Kilonova (radioactive decay of heavy elements)
 Kasen, Edo, Luke, Meng, Shibata, Gabriel, Stephan, Eddie, Cristina, Yong, Phil, Masaomi, Tominaga,
- Non-thermal Radio, isotropic X-rays, flaring FRB magnetar remnant etc.
 Kenta, Bruno
- Jetted GRB (High energy)
 Rodrigo

Discussion: INT Workshop r-process

August 2, 2017
The Future
At design sensitivity, LIGO/Virgo could detect a NS-NS merger every few weeks.
Same Event, Different Viewing Angle?

Kasen, Fernandez, BDM 2015

Kilonova light curves probe composition & geometry of merger ejecta
Same Geometry, Different Binary Mass

smaller binary mass, longer NS lifetime

“prompt collapse”

long-lived NS

Kasen, Fernandez, BDM, 2015
Supra-massive NS Remnant

Millisecond Magnetar?

\[B \sim 10^{14}-10^{16} \text{ G} \]
\[E_{\text{rot}} \sim 10^{52}-10^{53} \text{ erg} \]
\[L_{\text{sd}} = \frac{\mu^2 \Omega^4}{c^3} \approx 1.7 \times 10^{50} B_{15}^2 \text{ erg s}^{-1} \]
\[t_{\text{sd}} \approx 147 \text{ s } B_{15}^{-2} \]

Spin-down time < weeks-months unless \(B_d << 10^{12}-10^{13} \text{ G} \)
The First Few Hours...

\[t_{d,m} = \left(\frac{3mk}{4\pi\beta vc} \right)^{1/2} \approx 3 \text{ hr} \left(\frac{m}{10^{-4} M_\odot} \right)^{1/2} \left(\frac{\kappa}{10 \text{ cm}^2 \text{ g}^{-1}} \right)^{1/2} \left(\frac{v}{0.5 \text{ c}} \right)^{-1/2} \]
The First Few Hours...

"cocoon" emission
(e.g. Gottlieb+17; Kasliwal+17)

BDM+15

\[t_{d,m} = \left(\frac{3mk}{4\pi\beta vc} \right)^{1/2} \approx 3 \text{ hr} \left(\frac{m}{10^{-4} M_{\odot}} \right)^{1/2} \left(\frac{\kappa}{10 \text{ cm}^2 \text{ g}^{-1}} \right)^{1/2} \left(\frac{v}{0.5 \text{ c}} \right)^{-1/2} \]
The First Few Hours...

any temporally-extended variable ejecta

\[t_{d,m} = \left(\frac{3m\kappa}{4\pi\beta v c} \right)^{1/2} \approx 3 \text{ hr} \left(\frac{m}{10^{-4} M_\odot} \right)^{1/2} \left(\frac{\kappa}{10 \text{ cm}^2 \text{ g}^{-1}} \right)^{1/2} \left(\frac{v}{0.5 \text{ c}} \right)^{-1/2} \]
Gravitational Waves
Gamma-Ray Burst
Structured Jet / Cocoon
Afterglow (X-ray/Radio)
Blue Kilonova
Red/Purple Kilonova

A Well-Behaved Merger

- Gravitational Waves
- Gamma-Ray Burst
- Structured Jet / Cocoon
- Afterglow (X-ray/Radio)
- Blue Kilonova
- Red/Purple Kilonova
Open Questions

• Why was the blue ejecta mass so high in GW170817?
 – Small NS radius, inadequate simulations, or magnetar wind

• Is the blue KN bright for an edge-on merger?
 – Will the tidal tail block the polar ejecta?

• Did a BH actually form in GW170817?
 – How strong is the dipole field? (magnetic field burial?)
 – What is the GW emission from a supramassive NS?
 Can it compete with magnetic spin-down?

• What is the impact of the GRB jet on the kilonova?
 – Impact of shock heating on nucleosynthesis? Early thermal emission?

• Impact of total binary mass on KN signatures
 – Prompt collapse? Long-lived SMNS

• How will a BH-NS merger look differently than a BNS?
 – Will the blue KN be present? as strong?